INTRODUCTION

The area of the Pocatello South Quadrangle is located in southeastern Idaho, encompassing parts of Bannock, Power, and Carbon Counties. The map area is characterized by a complex geologic history, with a variety of rock units and structures that have been subject to significant tectonic activity. The area is of particular interest due to its geologic diversity and the potential for mineral and energy resources.

SETTING AND REGIONAL HISTORY

The geology of the Pocatello South Quadrangle is influenced by the Basin and Range Province, a tectonic province characterized by extensional tectonics and associated with the Basin and Range structural style. The province is influenced by the Great Basin Seismic Zone, which extends from Nevada to Utah and Colorado, characterized by major faults and seismic activity. The area is also influenced by the Yellowstone seismic zone, which extends from Wyoming to Montana and Idaho, characterized by volcanic activity and seismicity.

CHARACTERISTICS OF THE MAP AREA

The map area is characterized by a complex superposition of different rock units and structures, including the Caddy Canyon Quartzite, an Early Proterozoic quartzite unit, and the Lower Cretaceous Starlight Formation, a massive rhyolite tuff unit.

DEPOSITIONAL ENVIRONMENTS

The map area is characterized by a variety of depositional environments, including fluvial, lacustrine, and shallow marine environments. These environments are reflected in the diversity of rock units and structures, including conglomerates, sandstones, and mudstones.

TEXTURAL AND PHYSICAL PROPERTIES

The map area is characterized by a variety of textural and physical properties, including the presence of pebbles, sand, and clay. These properties are reflected in the diversity of rock units and structures, including conglomerates, sandstones, and mudstones.

REFERENCES


CONCLUSIONS

The map area is characterized by a complex superposition of different rock units and structures, including the Caddy Canyon Quartzite, an Early Proterozoic quartzite unit, and the Lower Cretaceous Starlight Formation, a massive rhyolite tuff unit. The area is of particular interest due to its geologic diversity and the potential for mineral and energy resources.